
www.manaraa.com

International  Journal  of

Environmental Research

and Public Health

Article

Vegetation Dynamic Assessment by NDVI and Field
Observations for Sustainability of China’s Wulagai River Basin

Panpan Chen 1,2,†, Huamin Liu 1,3,4,†, Zongming Wang 2,5 , Dehua Mao 2 , Cunzhu Liang 1, Lu Wen 1,
Zhiyong Li 1, Jinghui Zhang 1, Dongwei Liu 1, Yi Zhuo 1 and Lixin Wang 1,3,4,*

����������
�������

Citation: Chen, P.; Liu, H.; Wang, Z.;

Mao, D.; Liang, C.; Wen, L.; Li, Z.;

Zhang, J.; Liu, D.; Zhuo, Y.; et al.

Vegetation Dynamic Assessment by

NDVI and Field Observations for

Sustainability of China’s Wulagai

River Basin. Int. J. Environ. Res. Public

Health 2021, 18, 2528. https://

doi.org/10.3390/ijerph18052528

Academic Editor: James

Kevin Summers

Received: 20 January 2021

Accepted: 27 February 2021

Published: 4 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China;
chenpanpan@iga.ac.cn (P.C.); liuhmimu@aliyun.com (H.L.); bilcz@imu.edu.cn (C.L.);
wenlu@imu.edu.cn (L.W.); zylee007@imu.edu.cn (Z.L.); jhzhang1001@126.com (J.Z.);
liudw@imu.edu.cn (D.L.); zhuoyi@126.com (Y.Z.)

2 Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology,
Chinese Academy of Sciences, Changchun 130102, China; zongmingwang@iga.ac.cn (Z.W.);
maodehua@neigae.ac.cn (D.M.)

3 College of Ecology and Environment, Collaborative Innovation Center for Grassland Ecological
Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region),
Hohhot 010021, China

4 Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau,
Hohhot 010021, China

5 National Earth System Science Data Center, Beijing 100101, China
* Correspondence: Lxwang@imu.edu.cn; Tel.: +86-0471-4991-936
† These authors contributed equally to this work.

Abstract: Accurate monitoring of grassland vegetation dynamics is essential for ecosystem restoration
and the implementation of integrated management policies. A lack of information on vegetation
changes in the Wulagai River Basin restricts regional development. Therefore, in this study, we
integrated remote sensing, meteorological, and field plant community survey data in order to
characterize vegetation and ecosystem changes from 1997 to 2018. The residual trend (RESTREND)
method was utilized to detect vegetation changes caused by human factors, as well as to evaluate the
impact of the management of pastures. Our results reveal that the normalized difference vegetation
index (NDVI) of each examined ecosystem type showed an increasing trend, in which anthropogenic
impact was the primary driving force of vegetation change. Our field survey confirmed that the
meadow steppe ecosystem increased in species diversity and aboveground biomass; however, the
typical steppe and riparian wet meadow ecosystems experienced species diversity and biomass
degradation, therefore suggesting that an increase in NDVI may not directly reflect ecosystem
improvement. Selecting an optimal indicator or indicator system is necessary in order to formulate
reasonable grassland management policies for increasing the sustainability of grassland ecosystems.

Keywords: NDVI; vegetation dynamics; ecosystem communities; residual trend analysis; anthro-
pogenic impacts

1. Introduction

Agriculture and animal husbandry originate from grasslands; thus, human production
and life are inseparable from grasslands [1]. Grassland dynamics play important roles
in the ecological balance and in human economic development, and provide important
ecosystem services [2,3]. Grassland vegetation features both seasonal and interannual
change characteristics. Monitoring changes in vegetation using long-term remote sensing
data can help to better understand and simulate the dynamic changes in terrestrial ecosys-
tems and further reveal global vegetation dynamic trends and rules [4,5]. The normalized
difference vegetation index (NDVI), obtained from the Global Inventory Modeling and
Mapping Studies (GIMMS) Advanced Very-High Resolution Radiometer (AVHRR) or from
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the Moderate Resolution Imaging Spectroradiometer (MODIS), has been successfully used
for global vegetation dynamic change monitoring. For example, Townshend and Justice
used GIMMS AVHRR NDVI data from National Oceanographic and Atmospheric Adminis-
tration (NOAA) 7 satellites to analyze the changes in vegetation dynamics, ecosystem types,
and local rainfall in Niger, and concluded that high-resolution satellite data can be used
to monitor vegetation [6]. Although the resolution of the AVHRR data is only 8 km, they
were the dominant data from 1981 to 2006; therefore, they could not be replaced by other
data [7]. MODIS NDVI data have significantly improved since 2000, but the lack of data
before 2000 is a major disadvantage. GIMMS data and MODIS data have a similar dynamic
range and greater time trend consistency [8–10]. Du et al. used the resampling method to
compare and analyze GIMMS and MODIS NDVI data, fuse the two data sets, establish a
consistent NDVI time-series, and monitor the vegetation dynamics in the Qinghai–Tibet
Plateau [11]. However, the AVHRR data do not reflect the spatiotemporal changes of small-
and medium-scale vegetation, whereas MODIS data do not conform to the needs of a study
with a longer time-series.

It is important to solve the above mentioned problems by merging sensor data with
different spatial, temporal, and spectral resolution in time and space, in order to generate
remote sensing data with high spatial resolution and high temporal resolution charac-
teristics. It is feasible to fuse GIMMS data with remote sensing data with a high spatial
resolution to obtain a longer time-series data set. For example, Gao et al. proposed the
spatial and temporal adaptive reflectance fusion model (STARFM), which used Landsat
and MODIS imagery [12]. The model combined MODIS data and Landsat data to obtain
surface reflectance data with high resolution in both time and space. On the basis of the
STARFM algorithm, they proposed the spatial and temporal adaptive reflectance fusion
model (STAVFM) for NDVI data with different spatial and temporal resolutions [13]. The
algorithm is directly applied to the vegetation index and the time dimension weight is
improved, according to the change in vegetation characteristics, such that an NDVI data
set with high spatial and temporal resolution can be constructed. The enhanced spatial and
temporal adaptive reflectance fusion model (ESTARFM) algorithm has been proposed to
improve the algorithm on the basis of STARFM [14]. This algorithm fully takes into account
the spatial position distance, spectral difference, and time difference between adjacent
pixels and target pixels and, at the same time, enhances the accuracy of the simulated
results in regions with large heterogeneity. The model inputs two sets of fine- and coarse-
resolution images from the same or close time-series, successively, and then inputs the
coarse-resolution images of the predicted target date. The generated result is fine-resolution
images of the target date. In this study, the ESTARFM algorithm was used to construct an
NDVI data set with high spatial and temporal resolution for the Wulagai River Basin. The
reliability and validity of the reconstruction results were evaluated through a comparative
analysis of the real and predicted values.

Several studies have shown that with the increase in population and grazing, grassland
degradation is becoming an extremely important environmental problem in the grassland
ecosystems of arid and semi-arid regions [15,16]. However, the main factors affecting
grassland degradation have been controversial in academia [17–19]. GIMMS AVHRR NDVI
and vegetation optical depth (VOD) data have been used to investigate the vegetation
dynamics in the Mongolian Plateau from 1993 to 2012, and the vegetation dynamics
caused by human factors were distinguished [20]. Grassland restoration policies play a
key role in driving vegetation changes. A survey of vegetation changes in the Koshi River
Basin of the Qinghai–Tibet Plateau and its response to climate change from 1982 to 2011
showed that climate change may play a crucial role in determining the trend of vegetation
dynamics [21]. However, human contributions play a more prominent role in vegetation
changes in some vulnerable ecosystems [22,23]. Studies on community structure have
provided potential evidence regarding how climate or humans affect grassland vegetation
changes [24,25]. Cislaghi et al. analyzed the relationships between the plant community
and forage quality at seven different research sites in northern Italy. Their results showed
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that the succession of diverse plant communities is mainly caused by different local grazing
intensities [26]. Similarly to human factors, competition-dominated communities are
expected to be more stable and more resilient to climate change [27]. Studies have indicated
that the relative importance of climate change and human activities on vegetation dynamics
varies depending on the geographic location and ecosystem type [28,29].

The residual trend (RESTREND) method has been deemed to be an effective method
for distinguishing the relative impacts of climatic factors and human activities on vege-
tation [30]. Previous studies have generally used precipitation and temperature data to
build climate-based vegetation models, then derived the climate-based NDVI. Wessels
et al. performed logarithmic calculations on precipitation data, analyzed the cumulative
precipitation and its correlation with NDVI, established a regression model, and detected
grassland degradation intensity using least squares regression [31]. Another study used
the RESTREND method, combined with soil moisture and land degradation information,
to analyze vegetation changes in sub-Saharan arid regions in West Africa [31]. Their
results showed that the RESTREND method could explain land degradation and vegeta-
tion restoration in the arid regions of West Africa. However, studies that have analyzed
vegetation dynamics based on the RESTREND method have only used NDVI data com-
bined with climate data. Although some studies have used ground-based verification
data (e.g., livestock density), it is still extremely difficult to verify whether the RESTREND
method can represent the true succession status of plant communities [32]. The lack of
field observation data has always been a challenge; therefore, in this paper, we utilized
the RESTREND method and ground plot survey data to analyze the changes in vegetation
dynamics and the characteristics of ecosystems in the Wulagai River Basin. Vegetation
dynamics monitored by NDVI have good applications at a large scale. Does it accurately
reflect vegetation conditions on a regional scale? Our results provide support for the sus-
tainable development of the regional social economy and the implementation of grassland
management policies.

In this study, we aimed to explore plant dynamics and the succession of ecosystem
communities in the Wulagai River Basin, considering practical responses to the grassland
management policies in the area over the past 22 years. The objectives of this study were:
(1) To construct the NDVI time-series of the Wulagai River Basin from 1997 to 2018 by
integrating GIMMS NDVI and MODIS NDVI data; and (2) to identify the driving force of
vegetation dynamics in the Wulagai River Basin.

2. Materials and Methods
2.1. Study Area

The Wulagai River Basin is located in the northeast of Xilingol League, Inner Mongolia
Autonomous Region, China, at longitudes from 117◦25′ to 119◦58′ E and latitudes from
44◦19′ to 46◦41′ N. The basin covers a total area of 27,362 km2 and its borders can be
extracted based on the Wulagai River (Figure 1). The area falls within the criteria of a
temperate continental monsoon climate; that is, it has an average annual temperature
of −0.9 ◦C, average annual precipitation of 250–400 mm, and an altitude of about 850–
1300 m [33]. The topography of the central part is mainly dominated by plains, but there
are also low-lying hills, floodplains, terraces, and other landform types. According to the
characteristics of the community structure (i.e., the composition of plant community species
and biomass) in this area, we divided the whole area into three ecosystems (Appendix A
Figure A1). Specifically, the main ecosystem type is typical steppe, the northeast is meadow
steppe, and the middle area is covered with riparian wet meadow. The species in this area
are abundant, where the zonal vegetation mainly consists of Stipa grandis, Stipa krylovii,
Stipa baicalensis, and Leymus chinensis, which are various types of forbs.
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Figure 1. Location of the Wulagai River Basin and the digital elevation model (DEM).

2.2. Data
2.2.1. Normalized Difference Vegetation Index (NDVI) Data Sets

The GIMMS AVHRR NDVI data set was obtained from the Cold and Arid Regions
Scientific Data Center of China (http://westdc.westgis.ac.cn) (accessed on 16 October 2020),
with a spatial resolution of 8 km and an interval of 15 days from January 1997 to December
2006. The data set format was ENVI and the projection was Albers, with a total of 240 issues.
The MODIS NDVI data set, with a spatial resolution of 250 m and an interval of 16 days
from 2000 to 2018, was the MOD13Q1 data set downloaded from the USGS Land Processes
Distributed Active Archive Center (http://ladsweb.nascom.nasa.gov/data/search.html)
(accessed on 20 September 2020). The data set was in the Hierarchical Data Format (HDF)
file-format, with a total of 434 issues. As a three-level grid data product with sinusoidal
projection, MOD13Q1 is a corrected monthly data set, which contains corrections for sensor
degradation, inter-sensor differences, cloud effects, solar zenith angle, and viewing angle.

2.2.2. Plant Observations

According to the principle of random sampling, with consideration of the topography,
terrain, altitude, spatial distribution of ecosystem types, hilly slopes, and sunny slopes
in the watershed, fifty-five random sampling sites were determined in order to perform
vegetation evaluation and collection in August 1997. We used GPS and other tools to
conduct a point-by-point survey of the fifty-five sample points in July 2018 (Figure 2). GPS
was used to record the latitude, longitude, and altitude of each sample point. A 10 × 10 m
square at each sampling point was designed, and three squares (1 × 1 m) were then set on
its diagonal [34]. The names, heights, and abundances of all species in each square were
recorded. At the same time, each species was mowed and collected separately, and the fresh
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weight of all species was obtained on-site. The dry weight of each species was determined
by taking each unit square from each sample point, according to the classified species, and
oven-drying it at 75 ◦C for 24 h to a constant weight [34]. Each quadrant (1 × 1 m) was
regarded as representative of a small-scale (area of 1 m2) community, whereas the three
small-scale squares were combined into a large-scale community (with an area of 3 m2) at
a sampling point. The aboveground biomass data of the sample points were the average
values of the observations of this large-scale community.
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River Basin.

2.2.3. Meteorological Data

The meteorological data included monthly precipitation and temperature data from
January 1997 to December 2018, which were obtained from the China Meteorological
Data Network (http://data.cma.cn/) (accessed on 20 October 2020) and 13 meteorological
stations around the study area. According to these data, we used the kriging method to
generate precipitation and temperature distribution maps with the same resolution and
geographic co-ordinate system as the NDVI data set, in order to study the correlation
between climate factors and the spatial distribution of NDVI.

2.2.4. Livestock and Crop Yield Statistics

We obtained livestock and crop yield data from the Statistics Bureau of the Wulagai
management district. In this study, we assumed that livestock density and crop yield are
direct anthropogenic drivers of vegetation dynamics in the area.

http://data.cma.cn/
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2.3. Methods

The following three steps were completed to achieve the goals of this study. First,
a continuous NDVI data set from 1997 to 2018 was constructed. Secondly, the succession
of plant communities in the ecosystems over the past 22 years was analyzed, using plant
species diversity. Finally, the RESTREND method was used to distinguish the influence
of human factors and natural factors on vegetation changes in the area, as well as to
explore whether the NDVI can accurately reflect the community structure characteristics of
different ecosystem community types.

2.3.1. Building NDVI Data Sets

First, GIMMS and MODIS NDVI data were pre-processed. To enhance the quality
of the data—especially to eliminate cloud pollution data and abnormal data—a Savitzky–
Golay filter was used to smooth the NDVI data [35]. Then, the GIMMS and MODIS data
were extracted, according to the watershed boundary of the study area, using the maximum
value composite (MVC) method, in order to select the higher value of the half-month NDVI
to obtain the monthly NDVImax and, finally, the annual NDVImax [35].

For consistency of data fusion, the GIMMS data were resampled to 250 m, in order to
match the MODIS data. We used the ESTARFM fusion algorithm, and took the GIMMS
NDVI annual maximum values from 1997 to 2005 and the MODIS NDVI annual maximum
values from 2000 to 2005 as the basic input data, then obtained the predicted annual
NDVImax from 1997 to 2005 by calculation [13]. The input benchmark data for 2000–2005
were the adjacent data for those years. The forecast data and the corresponding period
of MODIS NDVI data were evaluated for effectiveness. Consequently, the NDVImax from
1997 to 2018 was successfully constructed. The specific process flowchart is described in
Figure 3. Tm and Tn respectively represent basic input data, and Tp represents the data
that need to be predicted.
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respectively represent basic input data, and Tp represents the data that need to be predicted.
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Whether the high-spatial resolution data generated after fusion can accurately and
truly compensate for actual missing data is directly related to the accuracy of the fusion
data information extraction and the effectiveness of the subsequent research and utilization.
Therefore, the evaluation and accurate analysis of simulated images are indispensable [36].
In order to test the prediction ability of the ESTARFM algorithm for NDVI derived from
GIMMS and MODIS, as well as to check the consistency between the prediction results
and the MODIS NDVI, we conducted a correlation analysis between the prediction results
(ESTARFM NDVI) and the actual observation results (MODIS NDVI), and evaluated the
reliability and effectiveness of the reconstruction results.

2.3.2. The RESTREND Method

RESTREND is a pixel-based method that uses long-term time-series NDVI data for
regression analysis. A regression relationship was established between the monitored
NDVImax and the accumulated precipitation and temperature data. Then, a statistical
model was generated, which was used to calculate the predicted NDVImax at each pixel [30].
Regression analysis was performed on the residuals between the observed and predicted
NDVImax of each pixel over time, in order to determine the direction, significance, and
size of the change trend. A statistically significant downward trend of residuals indicates
that vegetation degradation is mainly caused by human activities (such as overgrazing,
land reclamation, and urbanization); whereas a significant increasing trend indicates that
vegetation conditions have been improved. If the residuals show no trend over time, this is
mainly due to vegetation changes caused by climatic factors [30,31].

As some previous studies have revealed, precipitation and temperature are the princi-
pal climate factors that regulate vegetation dynamics in arid and semi-arid areas [37,38].
However, different herbaceous biomes and ecosystem types respond differently to the
variability of these two factors in different ways [39]. Therefore, to find the best correlation
between different ecosystem types, we calculated the correlation for many different com-
binations of precipitation, temperature accumulation, and lag time for each NDVI pixel.
The correlation between NDVI and precipitation has a time lag of about 1–12 weeks [40].
To calculate this interval and evaluate the true maximum correlation between NDVI and
precipitation, a time lag of 0–3 months was used to calculate the correlation coefficient
between NDVI and precipitation [41,42]. For the temperature variable, the accumulated
temperature was selected for the regression calculation. The regression model with the
highest R2 coefficient in the correlation was chosen to calculate the predicted NDVI values,
residuals, and trends.

To better reflect the spatial variations in precipitation, temperature, and vegetation
dynamics across the region, we used the entire regional dataset to conduct the regression
between NDVImax and meteorological factors and generate residuals. The annual NDVImax
was divided into six precipitation variables and two temperature variables at the pixel level,
in order to establish correlations. The precipitation variables included cumulative precipi-
tation with different time lags—cumulative precipitation from January to July, cumulative
precipitation from April to July, cumulative precipitation from April to August, cumu-
lative precipitation from June to August, and logarithmic forms of the abovementioned
precipitation variables. Temperature variables included cumulative temperatures greater
than zero degrees Celsius from January to August and their logarithmic forms. At each
pixel, the regression equation with the highest R2 was expected to produce a residual. The
statistical significance of the selected regression equation was tested, and only variables
with significant regression models (p < 0.05) were applied in subsequent analyses.

Then, based on the two-sided t-distribution, combined with three confidence intervals
(0.05, 0.10, and 0.25), eight categories were defined to test the trend and significance of
the residuals. The details are as follows, and the decreasing trend (negative slope) was
divided into four categories: D1 (|t statistics| > t0.05 (n-2)), D2 (|t statistics| > t0.10 (n-2)),
D3 (|t statistics| > t0.25 (n-2)), and DNC (|t statistics| < t0.25 (n-2)). Similarly, there were
four levels of increasing trend (positive slope), as follows: I1 (t statistics > t0.05 (n-2)), I2



www.manaraa.com

Int. J. Environ. Res. Public Health 2021, 18, 2528 8 of 20

(t statistics > t0.10 (n-2)), I3 (t statistics > t0.25 (n-2)), and INC (t statistics < t0.25 (n-2)). That
is, the p-value of the trends represented by D1, D2, and D3 (and I1, I2, and I3) were 0.05,
0.10, and 0.25, respectively; DNC and INC denote visually discernable decreasing and
increasing trends that were not statistically significant at p-values of smaller than 0.25.

3. Results
3.1. NDVI Dynamic Change Characteristics

We completed a comparative analysis and correlation scatter plot of the prediction
results and observation results. Figure 4 shows the comparative analysis of local features
from 1997 to 2005. From a visual point of view, there was a definite difference between the
predicted NDVI and the MODIS NDVI. Details of the predicted NDVI in some areas were
not as good as the MODIS NDVI, but the spatial information of the two was basically the
same. As MODIS data began in 2000, our correlation scatter plot ranges from 2000 to 2005
(Figure 5). In the entire area, ESTARFM predicted that the total R2 of NDVI and MODIS
NDVI was between 0.65 and 0.78, whereas the fitted RSME was between 0.0040 and 0.0065.
These results show that the predicted NDVI and MODIS NDVI had good consistency and
that the ESTARFM algorithm had a high predictive ability for NDVI in the Wulagai River
Basin. Consequently, it was concluded that this method can effectively reconstruct the
MODIS NDVI time-series.
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It can be seen, based on the NDVI values of the three ecosystem types, that the meadow
steppe community was intuitively the highest (i.e., between 0.57 and 0.80; see Figure 6).
The NDVI values of the riparian wet meadow and the typical steppe were between 0.40
and 0.63 and between 0.44 and 0.69, respectively (Figure 6). It can be concluded that the
changes on the time scale were all increasing. In addition, the NDVI of the riparian wet
meadow had the fastest rising trend, the meadow steppe was second, and the typical
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steppe change was the slowest; however, it still showed a general upward trend. We also
analyzed the average annual precipitation at the Wulagai weather station and found that
the fluctuation tendency of NDVI was almost the same, which also echoed the time lag
effect of precipitation (Figure 6).
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3.2. Correlation between NDVImax Spatial Distribution and Climatic Factors

In order to analyze the spatial distribution pattern of the relationship between NDVImax
and climate, we analyzed the pixel-level regression between cumulative precipitation, cu-
mulative temperature, and NDVImax with different time lags between 1997 and 2018 for
three ecosystem types. The areas of the three types of ecosystems were different and we
therefore selected the number of random pixels according to their proportion in the total
study area. For the meadow steppe, typical steppe, and riparian wet meadow, we selected
200, 500, and 40 random pixels, respectively. The results demonstrated that, for the three
ecosystem types, the best cumulative rainfall times were from April to July for 1997 to 2018
(Table 1).

Table 1. Correlation coefficient of NDVI with precipitation and temperature in three ecosystems, with significant area
(p < 0.05) as a percentage of this type.

Cumulative
Rainfall
Period

Rainfall
April–July

Rainfall
April–

August

Rainfall
June–

August

Ln
(Rainfall

April–
July)

Ln
(Rainfall

April–
August)

Ln
(Rainfall

June–
August)

Cumulative
Temp

January–
August

Ln (Cumu-
lative
Temp

January–
August)

Meadow
steppe

Correlation
coefficient 0.32 0.22 0.22 0.39 0.18 0.20 −0.25 −0.04

Percentage
of p < 0.05 27.62 6.84 7.66 49.66 4.72 5.56 11.95 1.22

Typical
steppe

Correlation
coefficient 0.33 0.27 0.30 0.41 0.28 0.33 −0.21 −0.09

Percentage
of p < 0.05 32.36 24.73 32.03 51.65 27.77 36.17 10.56 1.28

Riparian
wet

meadow

Correlation
coefficient 0.25 0.23 0.30 0.33 0.23 0.30 −0.115 −0.025

Percentage
of p < 0.05 22.21 16.81 35.41 42.60 16.61 35.23 3.96 1.65
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The NDVImax and precipitation were significantly related to 43.73% of the pixels of
the meadow steppe, 51.65% of the pixels of the typical steppe, and 42.60% of the pixels of
the riparian wet meadow (Table 1). The R2 relationships for the pixel-level regression are
shown in Figure 7.
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Compared with precipitation, the intensity and spatial extent of the effect of tempera-
ture on NDVImax were relatively weak. The results showed that NDVImax was negatively
correlated with temperature in the study area, and the correlation between the three ecosys-
tem types and the two temperature variables was not statistically significant (Table 1).
This is in agreement with the results of another study, in which the effect of temperature
change on NDVImax was small [34]. The climate factors related to NDVImax mainly in-
cluded the precipitation time-series; thus, removing the precipitation signal is equivalent
to eliminating the climatic impact on the NDVI time-series. Consequently, we only selected
precipitation data and NDVImax for the linear regression model and analyzed the trend of
residual change.

3.3. Residual Analysis

Over the entire study period, among the residuals of NDVImax and precipitation
regression, the residuals of most pixels of each ecosystem type did not show statistical
significance. Therefore, we divided the period of 22 years into three sub-periods accord-
ing to changes in land-use policies (i.e., 1997–2003, 2003–2007, and 2008–2018), which
represented the transition from free grazing to the beginning of the pasture management
policy, the beginning of pasture contracting and basic pasture delineation phases, and the
implementation of pasture restoration policies after pasture contracting, respectively. The
residuals of the three sub-periods showed different trends. We determined the trends of
the residuals using the slope of the regression line and the statistical significance (Figure 8
and Table 2).

The percentage of pixels in this area that showed a decreasing trend (D) reached its
highest (36.3%) in the sub-period 1997–2003 and lowest in the sub-period 2003–2007 (1.8%).
The percentage of pixels exhibiting an increasing trend (I) was highest in the sub-period
2008–2018 (27%), whereas those in the other two sub-periods were lower; that is, 1997–2003
(4.9%) and 2003–2007 (23.3%). In the first sub-period, the percentage of pixels that showed
a significant but statistically insignificant decreasing trend (DNC) was 37.8%, whereas
the percentages of pixels in the latter two sub-periods were similar, both below 20% and
showing statistical significance (Table 2). However, the percentage of pixels that showed an
apparent, but statistically insignificant, increasing trend (INC) had the highest percentage
in the second sub-period (59%), while there was a large difference between the other two
sub-periods (21.1% and 39.1%; see Table 2).
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Table 2. Proportions of residual trends for each sub-period in the study area.

Residual 1997–2003 (%) 2003–2007 (%) 2008–2018 (%)

D1, D2, D3 36.31 1.76 15.58
DNC 37.75 16.01 18.37
INC 21.08 58.96 39.08

I1, I2, I3 4.86 23.27 26.97
Total 100.00 100.00 100.00

Note: D1, D2, D3 and DNC denote decreasing trends; I1, I2, I3 and INC denote increasing trends.

The residuals of each ecosystem type showed different trends for the three sub-
periods (Figure 8). Most of the pixels of each of the three ecosystem types (about 59%
in total) showed DNC or INC patterns, whereas 41% of the pixels showed an increasing
or decreasing trend, indicating that there was no consistent trend during the sub-period
1997–2003 (Figure 9 and Table 2). However, during the sub-period 2003–2007, more pixels
showed an upward residual trend, with a significant increase during the sub-period 2008–
2018 (Figure 9 and Table 2).

There was a significant increase in livestock density and crop yield in the Wulagai
management area from 1997 to 2018. The number of livestock in the management area in-
creased, then decreased (i.e., from 300,000 head to 877,000 head and finally to 580,000 head;
see Figure 10). The total crop yield fluctuated significantly in individual years and the
overall trend continued to increase (i.e., from 3800 tons to 63,566 tons; see Figure 10). From
1997 to 2000, the trend of the residual error was not statistically related to the rate of change
in livestock density or the total crop yield during the period (Table 3). From 2001 to 2018,
the trend of the residual error and the rate of change in livestock density were significantly
negatively correlated (Figure 11a and Table 3), whereas there was a significant positive
correlation with the total crop yield (Figure 11b and Table 3).
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Table 3. Coefficients of determination and directions of regression between NDVI residual trend
and rate of change in livestock densities and rate of change in total crop yields for 1997–2001 and
2001–2018.

Human Factors Period Coefficient of Determination
(Direction)

Rate of change in livestock densities 1997–2001 0.009 (−)
2001–2018 0.044 ** (−)

Rate of change in total crop yield 1997–2001 3.38E-5 (−)
2001–2018 6.225E-6 * (+)

** p < 0.01, * p < 0.05.
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3.4. Community Structure Characteristics of Ecosystem Types in the Wulagai River Basin

The study area is mainly dominated by Gramineae, Compositae, Leguminosae, and
Rosaceae. We found that a total of 32 families, 96 genera, and 156 species were monitored
in 1997, which had increased to 32 families, 103 genera, and 184 species in 2018.

In the meadow steppe ecosystem, the plant community type was a S. baicalensiss +
Filifolium sibircum community in 1997, and a S. baicalensiss + Carex korshinskyi community
in 2018. Moreover, the average plant height and aboveground biomass of the ecosystem in
2018 were higher than in 1997. Regarding the species composition, in 2018, the proportion
of F. sibircum—which occupied as the dominant species in 1997—decreased (Table 4).
In 1997, the typical steppe ecosystem was a S. grandis + L. chinensis community, which
succeeded to a S. grandis + S. krylovii + L. chinensis community in 2018. The dominant
species in the community changed from S. krylovii to S. grandis, the average plant height and
aboveground biomass decreased, and the proportion of Euphorbia fischeriana and Artemisia
frigida in species composition increased from 1997 to 2018 (Table 4). In the riparian wet
meadow ecosystem, the Agrostis alba + Potentilla anserina community in 1997 became a
C. korshinskyi + Hemerocallis minor community in 2018, and the main species composition
also changed. In 2018, the aboveground biomass was 233.16 ± 2 g/m2 and the average
plant height was 18.78 ± 0.3 cm, which was higher than that in 1997 (Table 4), but the
number of species in the plot and the single species occupying the dominant position had
not changed.
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Table 4. Species composition of three ecosystems.

Ecosystem Type Years Community Type Main Species Average Plant
Height (cm)

Above-Ground
Biomass (g/m2)

Meadow steppe 1997 Stipa baicalensis +
Filifolium sibircum

Stipa baicalensis,
Filifolium sibircum,
Carex pediformis,

Artemisia tanacetifolia,
Leucopoa albida

18.21 ± 0.5 148.31 ± 3

2018 S. baicalensis +
Carex korshinskyi

Stipa baicalensis, Carex
korshinskyi, Sanguisorba

officinalis, Filifolium
sibircum, Serratula

centauroides

20.77 ± 0.2 159.02 ± 2

Typical steppe 1997 S. grandis + Leymus
chinensis

Stipa grandis, Leymus
chinensis, Artemisia
frigida, Euphorbia

fischeriana, Scutellaria
baicalensis

14.17 ± 0.2 83.96 ± 5

2018
S. grandis + S.

krylovii + L.
chinensis

Stipa grandis, Stipa
krylovii, Leymus

chinensis, Euphorbia
fischeriana, Artemisia
frigida, Alium ramosm

12.53 ± 0.3 60.89 ± 3

Riparian wet
meadow

1997 Agrostis alba +
Potentilla anserina

Agrostis alba, Potentilla
anserina, Halerpestes

ruthenica, Suaeda
glauca, Carex
korshinskyi

14.66 ± 0.5 196.26 ± 4

2018 C. korshinskyi +
Hemerocallis minor

Carex korshinskyi,
Hemerocallis minor,

Agrostis alba, Potentilla
anserina, Suaeda glauca

18.78 ± 0.3 233.16 ± 2

4. Discussion
4.1. The Dynamic Changes and Influencing Factors of NDVI in Different Ecosystems

The time-series changes in NDVI of different ecosystems in the Wulagai River Basin
are shown in Figure 6. The lowest point of the NDVI trough appeared in 2007, which is
consistent with the pasture management policy of the Wulagai Management Area. The
government completed the confirmation of the contractual rights of the pasture from 2004
to 2006, and it began to be managed by various herders in 2007. There have been significant
fluctuations in the NDVI due to policy changes. The annual precipitation in the Wulagai
River Basin has also changed, corresponding with the fluctuating NDVI (Figure 6); for
example, there was less precipitation in 2006 and 2007, and the environment was relatively
dry. The combined action of natural factors and human factors caused the NDVI to
experience greater fluctuations. Several previous studies which have analyzed vegetation
trends based on remote sensing data have shown that the net primary production of the
Xilingol grassland increased from the early 1990s to the early 2000s [43,44]. These results
indirectly indicate that land-use policies and pasture management practices during this
period had a positive impact on grasslands.

Affected by the atmospheric circulation in Southeast Asia, Inner Mongolia entered a
flood season from west to east. The flood situation in May 1998 was very severe, and the
precipitation in the study area reached its peak at this time. The NDVI in 1998 was slightly
lower than that in 1997, caused by the flooding of grasslands and poor vegetation conditions
(Figure 6). On the basis of the analysis, the remaining trends and the impact of precipitation
effects were assessed; specifically, the performance of grassland vegetation changes in the
Wulagai River Basin from 1997 to 2003 was manifested by a decline in vegetation coverage
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and biomass, which have gradually improved since 2004 (Figures 6 and 8, Table 4). The
grassland degradation in Inner Mongolia, based on field survey data, has been reported
by Jiang et al. [45]. However, the vegetation in the Xilingol League showed a tendency to
deteriorate in the late 1990s [46]. Therefore, correct identification of climate change and
vegetation dynamics caused by human activities is essential for the implementation of
appropriate land-use policies and grassland management.

4.2. The Influence of Anthropogenic Factors on the Residual Trend

In this study, the declining trend of the residuals of the three ecosystem types was
mainly due to vegetation degradation from 1997 to 2003. The residuals of the typical
steppe and riparian wet meadow ecosystems showed p-values < 0.1, whereas from 2003
to 2007 the upward trend indicated that the vegetation had improved. The residuals
increased significantly, indicating the significant improvement of vegetation from 2008
to 2018. Furthermore, the same trend in the same period has also been proven in other
studies [46,47]. From 1993–2001, both the number of livestock and the output of crops
increased slightly (Figure 10). However, their correlations with NDVI residuals were not
statistically significant (Table 3). This result may have been affected by the extreme drought
in the area in 1997, the floods in 1998, and the ecological restoration plan that began in
2000 [28]. Specific measures to restore degraded grassland ecosystems have included the
control of livestock numbers and grazing in specific areas or seasons [48]. The increase in
surplus trend was closely related to the grazing prohibition policy, whereas the decrease in
the remaining trend was related to an increase in livestock density (Figure 11a). Our field
observations indicated that overgrazing had significantly reduced vegetation cover and
aboveground biomass (Figure 6 and Table 4) and, combined with pasture management
policies at that time, we concluded that grazing was the main driving force of grassland
vegetation changes in the Wulagai River Basin from 1997 to 2003 [33]. The grassland in the
Wulagai management area gradually changed from collective management to contractual
confirmation of rights of pastoralists from 2003 to 2007, which was a significant change
of policy during the research period. Consequently, the residual direction changed, as
compared with that at the end of the 1990s. The drought conditions during the study
period (2006–2007) only changed the residual rate and did not cause a change in direction.
This also indicates that the influence of climatic factors on residuals is smaller than that of
human factors [49,50], thus highlighting that the correct identification of climate change
and vegetation changes caused by human activities is critical to the implementation of
appropriate land-use policies and grassland management.

4.3. Comparison of NDVI and Community Structure Changes in the Same Ecosystem

The slope of NDVI for each ecosystem type was distinct, and they all showed an
upward trend (Figure 6). In addition, the overall NDVI also showed an upward trend.
The change in precipitation led to a corresponding change in vegetation fluctuation, in
agreement with Zhou et al., who also reported that the NDVI showed an upward trend
when rainfall increased [51]. A comparison of the results of two field observations (in 1997
and 2018) showed that both the biomass and plant height of the meadow steppe ecosystem
increased, indicating a positive succession trend. Likewise, the NDVI results showed a
similar trend. The NDVI of the typical steppe was the smallest among the three ecosystem
types, but it still showed an overall upward trend, which was inconsistent with the field
observation results. In the riparian wet meadow ecosystem, field observations showed
a trend of degradation, whereas the NDVI results showed an increasing trend. Similarly,
studies have shown that the results from field observation measurement data of Inner
Mongolian grasslands differ from those derived from NDVI remote sensing data [45],
indicating that it cannot completely represent the true growth status of the plant ecosystem.
Some annual plants have replaced the dominant species in this ecosystem, showing higher
NDVI values in remote sensing imagery; however, they are representative of grassland
degradation [52]. The growth status of different ecosystems corresponds to different
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NDVI trends, such that an increase in NDVI trend alone cannot fully characterize the
improvement of plant communities in the regional ecosystem. Therefore, focusing only on
the results of remote sensing vegetation data, without considering the impact of climate
and human factors, may lead to the incorrect implementation of pasture management and
land-use policies.

5. Conclusions

Integrating GIMMS NDVI data, MODIS NDVI data, and the field investigation of
plant communities, combined with the residual trend method, we analyzed the vegeta-
tion dynamics and ecosystem community structure characteristics of the Wulagai River
Basin, distinguishing vegetation changes caused by climatic and human factors. Our study
revealed that NDVI values in the Wulagai River Basin showed an overall gentle upward
trend. The residual analysis indicated that human factors were the main driving forces of
the vegetation dynamics, and that the implementation of the new pasture management
policy should help to curb the increase in stocking rates and therefore increase the vege-
tation area. However, the field observation results were not completely consistent with
the NDVI results. During the study period, the species distribution of the meadow steppe
ecosystem was relatively even and the ecosystem was stable. Additionally, the typical
steppe and riparian wet meadow ecosystems experienced declines in productivity and
the replacement of dominant species, such that the ecosystems can be considered rela-
tively fragile. Annual vegetation in these communities has replaced the original dominant
species, which has led to an increase in the NDVI, thus masking the degradation trend of
the grassland. On a regional scale, the NDVI results alone cannot explain the improvement
or deterioration of all grassland types, nor can it reflect the changes in the dominant species
of plant communities. Therefore, when using the NDVI to monitor grassland conditions,
it needs to be verified through field observation data. This research provides important
scientific information for formulating local grassland protection and restoration policies.
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